$\BF\aleph$-Projective Spaces in Noncompact Categories
نویسندگان
چکیده
منابع مشابه
Gorenstein projective objects in Abelian categories
Let $mathcal {A}$ be an abelian category with enough projective objects and $mathcal {X}$ be a full subcategory of $mathcal {A}$. We define Gorenstein projective objects with respect to $mathcal {X}$ and $mathcal{Y}_{mathcal{X}}$, respectively, where $mathcal{Y}_{mathcal{X}}$=${ Yin Ch(mathcal {A})| Y$ is acyclic and $Z_{n}Yinmathcal{X}}$. We point out that under certain hypotheses, these two G...
متن کاملFuzzy projective modules and tensor products in fuzzy module categories
Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...
متن کاملgorenstein projective objects in abelian categories
let $mathcal {a}$ be an abelian category with enough projective objects and $mathcal {x}$ be a full subcategory of $mathcal {a}$. we define gorenstein projective objects with respect to $mathcal {x}$ and $mathcal{y}_{mathcal{x}}$, respectively, where $mathcal{y}_{mathcal{x}}$=${ yin ch(mathcal {a})| y$ is acyclic and $z_{n}yinmathcal{x}}$. we point out that under certain hypotheses, these two g...
متن کاملGeneralized IFSs on Noncompact Spaces
The aim of this paper is to continue the research work that we have done in a previous paper published in this journal see Mihail andMiculescu, 2008 . We introduce the notion of GIFS, which is a family of functions f1, . . . , fn : X → X, where X, d is a complete metric space in the above mentioned paper the case when X, d is a compact metric space was studied andm,n ∈ N. In case that the funct...
متن کاملObservability on Noncompact Symmetric Spaces
The \classical case" is the case in which X is a compact riemannian manifold and D is the (positive de nite) Laplacian. Then (1.1) is the heat equation on X . In this paper we'll look at the special case where X is a riemannian symmetric space of noncompact type. Thus X is a noncompact riemannian manifold with a very large symmetry group G, harmonic analysis on X is understood in terms of the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Rocky Mountain Journal of Mathematics
سال: 1991
ISSN: 0035-7596
DOI: 10.1216/rmjm/1181072907